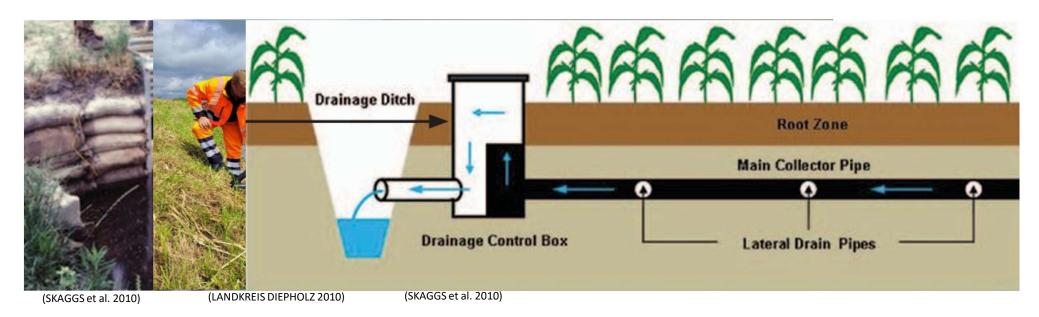


Pilotprojekt zu regelbarer Drainage im Kreis Warendorf – Erfahrungen und Ergebnisse aus dem ersten Jahr


Forum Boden – Gewässer – Altlasten 24.10.2025

Justus Hunold Hochschule Osnabrück

- Steigende Wahrscheinlichkeit von Dürreereignissen (MARKOVIC et al. 2024)
- Bewirtschaftung von Flächen mit geringer Wasserhaltefähigkeit wird erschwert
- Drainagen können das Problem durch Entwässerung verschärfen (SKAGGS et al. 2012)

Ansatz → Anstauung von Wasser, um verfügbares Wasser zu halten

- Verschiedene Methoden f
 ür Umsetzung
- Physikalisches Prinzip ist immer gleich

Stand des Wissens

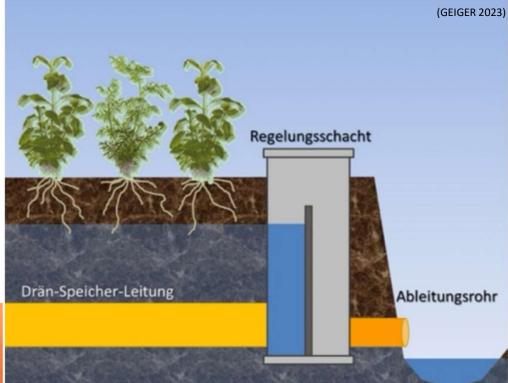
Zusammenfassung der Ergebnisse von Feldstudien zur Wirksamkeit kontrollierter Entwässerung bis 2010 (nach SKAGGS et al. 2010 und SKAGGS et al. 2012)

Literatur	Ort	Boden	Fläch (ha)	e Dränabstan d (m)	Dräntie fe (m)	Anstauhöh e (m) ^[a]	Red. der Entwässer ung (%) ^[b]
GILLIAM et al. (1979)	North Carolina (USA)	sandiger Lehm	5-16	30 & 80	1,2	0,3-0,5	50
	(00/1)	sandiger Lehm	3	Reduzier		3	85
EVANS et al. (1989)	North Carolina (USA)	sandiger Lehm	4	Entwässeru bis 8		8 %	56
	(55.4)	Lehm Lehm	4			,6 }	51 17
LALONDE et al. (1996)	Ontario (CAN)	Schlufflehm	0,63	Versuch überwiege		_	49
TOLOMIO und BORIN (1996)	Legnaro (IT)	Lehm	0,5	Stand	dorte	^ 1	69
TAN et al. 1998)	Ontario (CAN)	Lehm	2,2	überwiegend in Nordamerika!		1	20
GAYNOR et al. (2002)	Ontario (CAN)	Lehm	0,1			3	16 ^[c]
DRURY et al. (2008)	Ontario (CAN)	Lehm	0,1	7,5	0,6	0,3	29 ^[d]
WESSTROM und MESSING (2007)	Schweden	Lehmiger Sand	0,2	10	1	0,2-0,4	80
FAUSEY (2005)	Ohio (USA)	Schlufflehm	0,07	6	0,8	0,3	41
RAMOSKA et al. (2009)	Mittel- Litauen	Lehmiger Sand	5	20-24	0,9-1,1	0,6	8-17
GASIUNAS et al. (2022)	Litauen	k. A.	k. A.	k. A.	k. A.	0,6-1	60

Zusammenfassung der gemessenen Auswirkungen des Drainagewassermanagements auf die Ernteerträge (nach SKAGGS et al. 2012)

Literatur	Ort	Beobachtete Jahre	Anzahl der Standort	Kultur	Effekte	
TAN et al. 1998	Ontario	2	1	Sojabohne	Kein Effekt	
DRURY et al. 2009	Ontario	Pos	sitive	Mais	Kein Effekt	
WESSTROM		_		Sojabohne	Kein Effekt	
und MESSING 2007	Schweden		effekte in	Getreide	2-18 % Ertragssteigerung	+
FAUSEY 2005	Ohio Ohio	8 von 2	8 von 21 Fällen		Kein Effekt Kein Effekt	
POOLE et al. 2011	North Carolina	6	2	Mais	11 % Ertragssteigerung	+
2011	North Carolina	5	2	Weizen	Kein Effekt	ekt
	North Carolina	6	2	Sojabohne	10 % Ertragssteigerung	+
DELBEQ et al. 2012	Indiana	Versuche h	ersuche häufig mit		5,8 % bis 9,8 % Ertragssteigerung	+
JAYNES 2012	Iowa	Somme		Mais	Kein Effekt	_
	Iowa		<u> </u>		8 % Steigerung	+
HELMERS et	lowa	(durch Standort)		Mais	Reduzierter	-
al. 2012	Iowa	4	4 1		Ertrag Kein Effekt	
COOKE und	Illinois	2	4	Sojabohne Mais	Kein Effekt	
VERMA 2012		2	3	Sojabohne	Kein Effekt	
RAMOSKA et al. (2009)	Mittel-Litauen	7	1	,	Kein Effekt	_
TOLOMIO und	Italien	14	1	Mais	26,3 % Ertragssteigerung	+
BORIN (2019)	italien	14		Weizen	Kein Effekt	-
GHANE et al. 2012	Ohio	1 bis 2	7	Mais	1-19 % Ertragssteigerung in 6 von 9 Fällen 1-7 %	+
		1 bis 2	7	Sojabohne	Ertragssteigerung in 7 von 11 Fällen	+

- 1. Hat die Anstauung von Drainagen einen signifikanten Einfluss auf Parameter des Wasserhaushalts?
- 2. Liegen bei einer Anstauung unterschiedliche Effekte in Abhängigkeit des Abstands zu den Drainagerohren oder der Anstaubrunnen in der Fläche vor?
- 3. Können Effekte auf Kulturwachstum oder -erträge durch die Anstauung beobachtet werden?

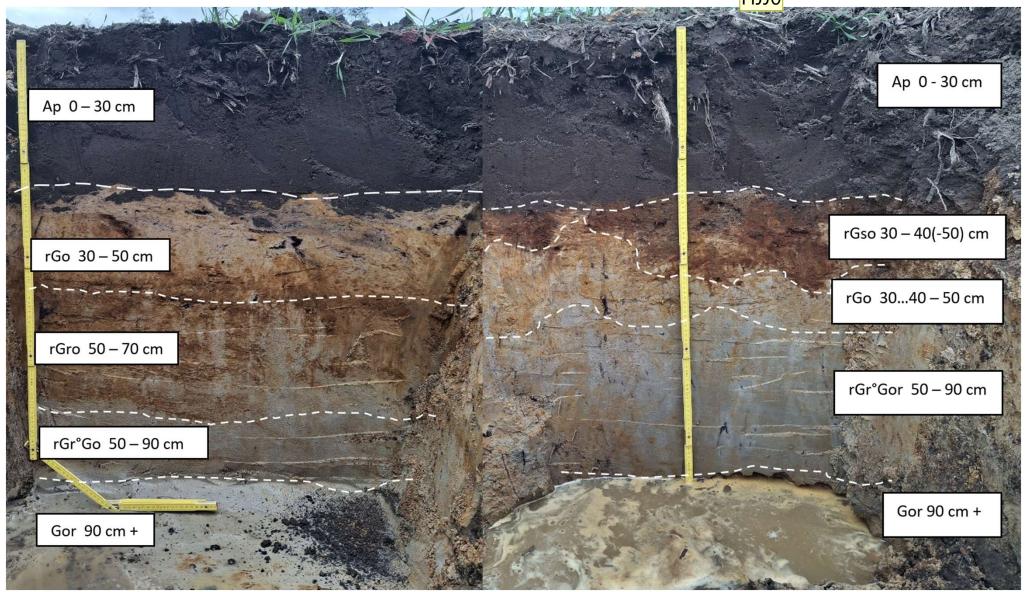

System "EkoDrena"

(GEIGER 2023)

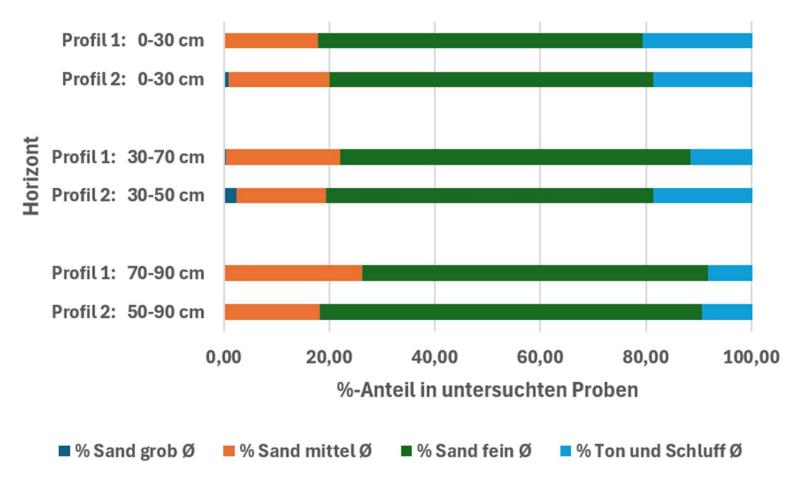
Versuchsaufbau

Versuchsaufbau

- Einbau der Brunnen 18.12.2024
- Drainagen im Vorhinein gespült
- Drainagetiefe: ca. 120 cm
- Sehr feuchte Bedingungen für Einbau
- Zeitpunkt im Spätsommer Herbst besser geeignet
- Anstaueinstellung: 45 cm u. Bodenoberfläche

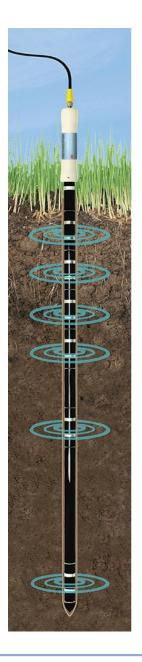


Profil 1: Geregelte Dränage


Profil 2: Freie Dräpage

HJJ0

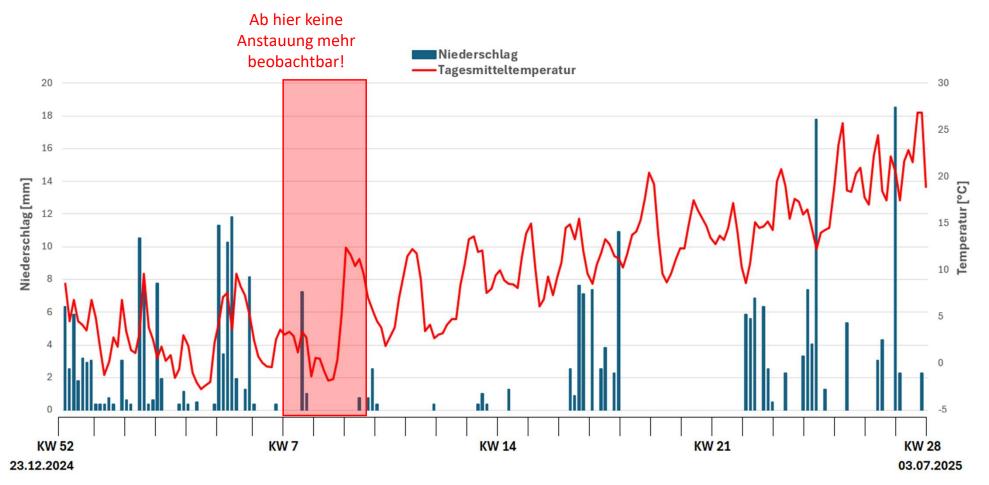
Unterschiede in den Horizonten vorstellen Entstehung auch --> Rudis Beschreibung Hunold, Justus Johannes; 2025-10-21T17:00:07.152

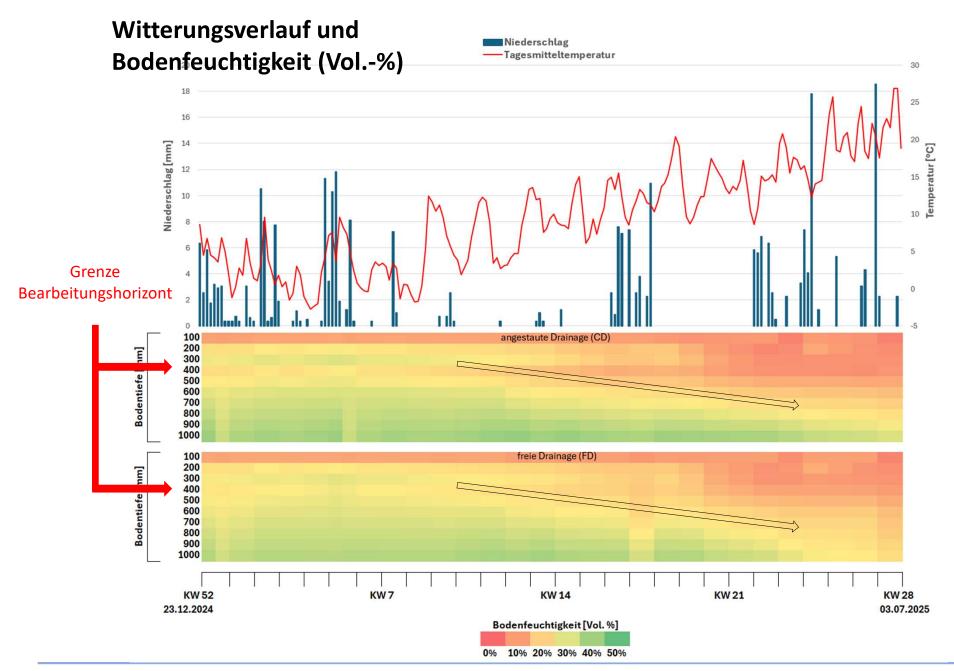


- Hoher Feinsandanteil (60-70 %)
- Unterschiede in der Ton- und Schluff-Fraktion im 2. Horizont (11 % P1, 18 % P2)

- Messung der Bodenfeuchtigkeit (Vol.-%)
- PR2-Sonde (Delta-T-Device)
- 10, 20, 30, 40, 60, 100 cm Messtiefe
- Wöchentlich an 25 Positionen

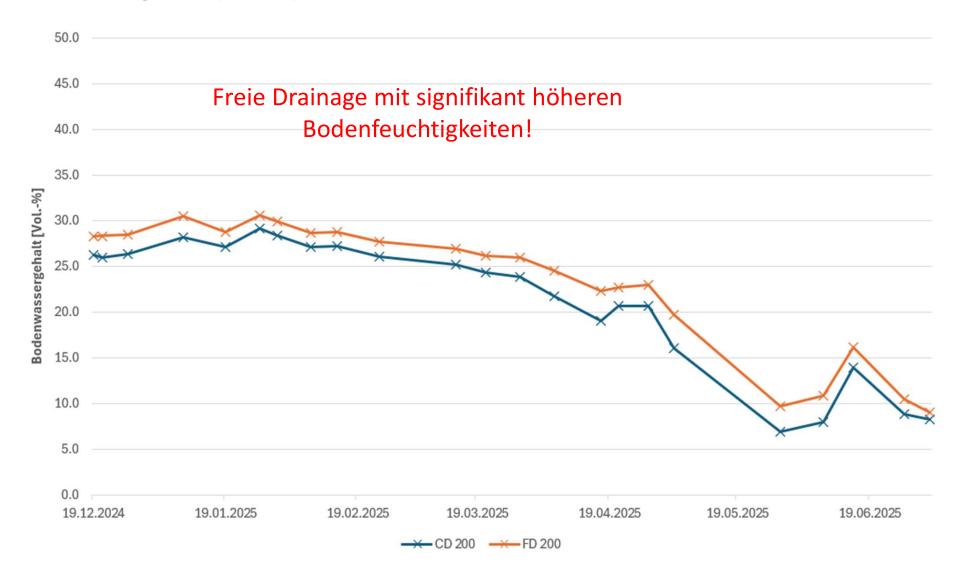
Datenerhebung


- Messung der Saugspannung (f
 ür Aussage Kulturwachstum)
- "Watermark-Logger" für pF-Werte
- Gemessen in 25 und 50 cm Tiefe
- Jeweils 3 Wiederholungen


Niederschläge und Tagesmitteltemperatur im Versuchsverlauf

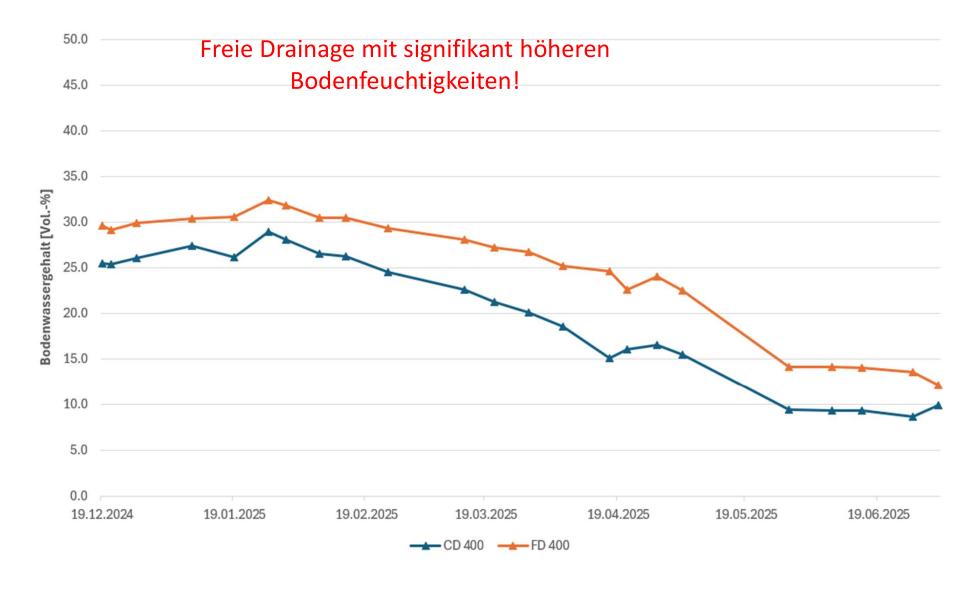
- Niederschläge nehmen ab KW 7 deutlich ab
- Brunnenanstauung innerhalb von 3 Wochen weg
- Nachfolgende Niederschläge können keine Anstauung mehr erzeugen

Ergebnisse

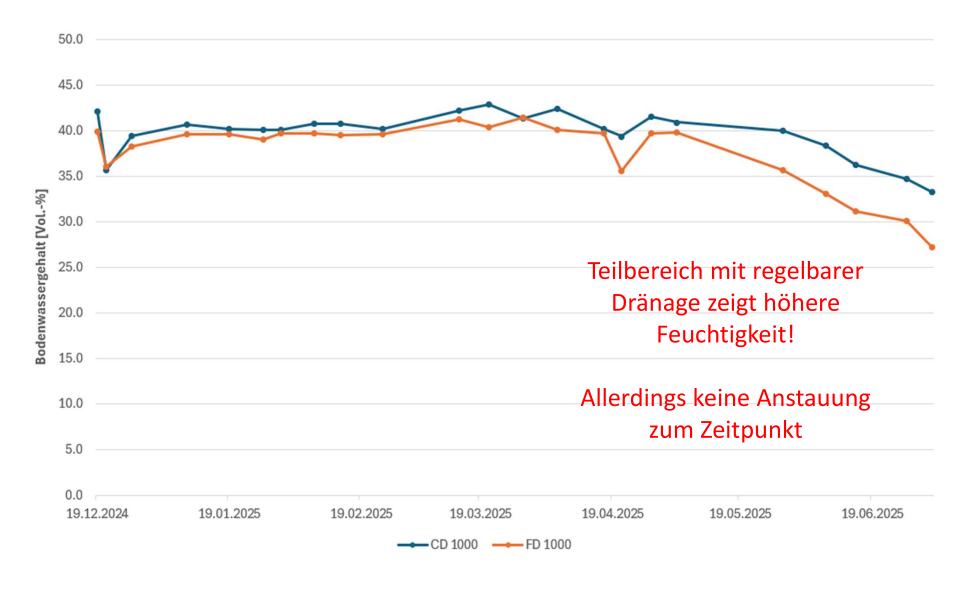

Folie 17

HJJ0 Welche Daten sieht man? Wie wurden sie verarbeitet?

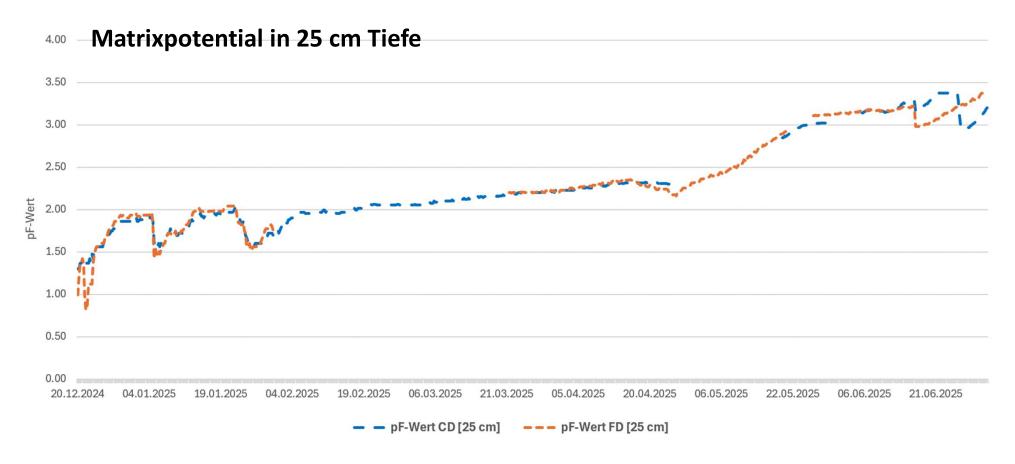
Hunold, Justus Johannes; 2025-10-20T18:57:35.885



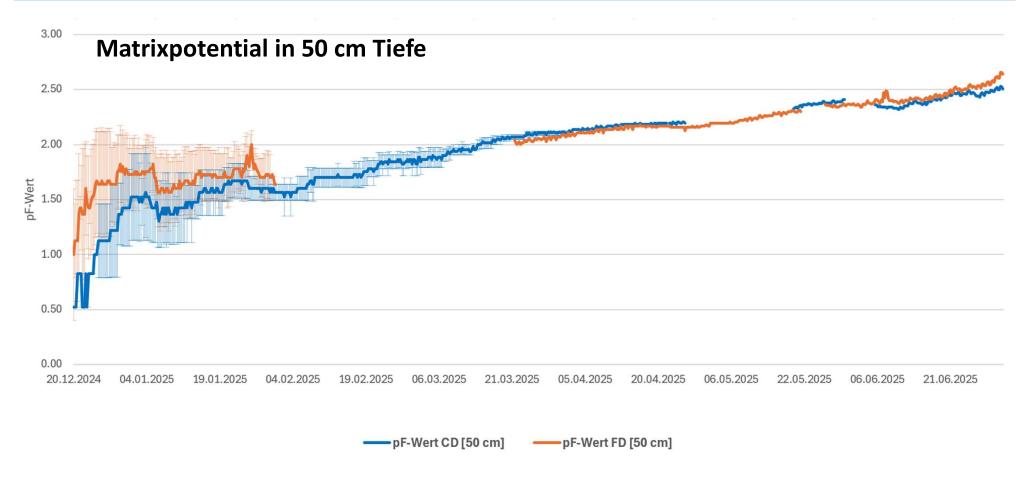
Wassergehalt (Vol.-%) in 20 cm Tiefe



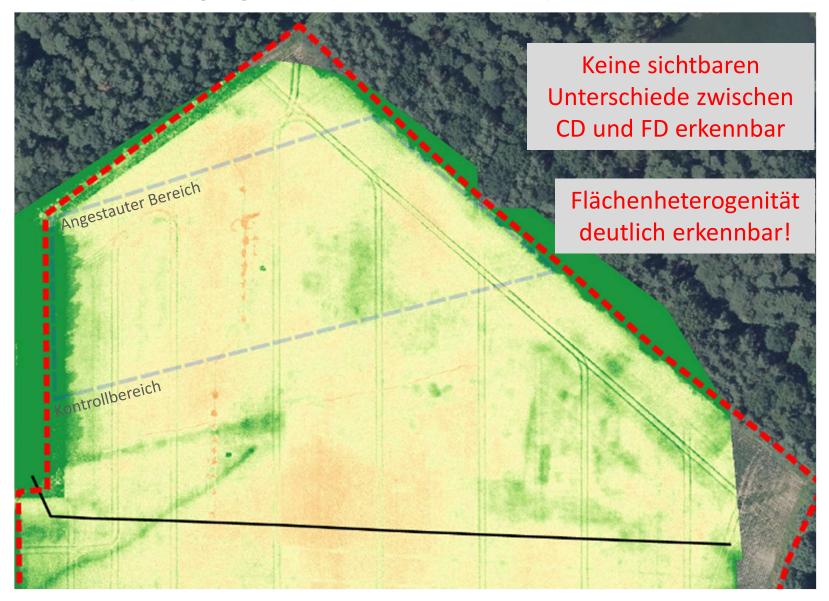
Wassergehalt (Vol.-%) in 40 cm Tiefe



Wassergehalt (Vol.-%) in 100 cm Tiefe



- pF-Werte ca. zwischen 1 und 3,4
- Keine Unterschiede zwischen gemittelten Sensorwerten erkennbar



- Unterschiede zwischen den Kurven im Anstauungszeitraum
- Niedrigere pF-Werte → Wasser leichter verfügbar
- Trend ist erkennbar, allerdings nicht statistisch absicherbar

NDVI-Index (Befliegung zur Abreife am 28.06.2025)

Lediglich kurze Anstauung

- Ausbleibender Niederschlag
- Standort mit hoher Wasserleitfähigkeit

Schwieriger Standort

- Heterogenität, auch innerhalb der Teilflächen (erschwerte Vergleichbarkeit)
- Wasser lässt sich nur schwer halten
- Abpufferung von Trockenperioden kann so nicht erfolgen

Ergebnisse zeigen keine signifikanten Unterschiede

- Bodenfeuchtigkeit maximal so hoch wie die Kontrolle
- Positiver Trend bei Saugspannung (Matrixpotential), allerdings nicht signifikant
- Keine Effekte auf Abreifeverhalten

Eignung auf sehr leichten Standorten muss daher hinterfragt werden!

Standort

- Betrachtung von Standorten mit verschiedenen Bodeneigenschaften
- Wenn Anstauung zuverlässiger erfolgt, könnten Ergebnisse eventuell positiver ausfallen

Betrachtungszeitraum

- für gesicherte Aussagen viel zu kurz
- Muss längerfristig untersucht werden
- Zeigt aber Schwierigkeiten und neue Fragen

Systemreaktion auf Standort und Witterung muss viele Jahre untersucht werden Für Untersuchungen und Aussagen zum Ertrag müssen diese Reaktionen klar sein!

Literatur

- COOKE, R., VERMA, S. (2012): Performance of drainage water management systems in Illinois, United States. Journal of Soil and Water Conservation 67, 453 464.
- DELBEQ, B. A., BROWN, J. P., FLORAX, R. J., KLADIVKO, E., NISTOR, A., LOWENBERG-DEBOER, J. M. (2012): The Impact of Drainage Water Management Technology on Corn Yields. Agronomy Journal 104, 1100 1109.
- DRURY, C. F., TAN, C. S., REYNOLDS, W. D., WELACKY, T. W., OLOYA, T. O., GAYNOR, J. D. (2009): Managing tile drainage, subirrigation and nitrogen fertilization to enhance crop yields and reduce nitrate loss. Journal of Environmental Quality 38, 1193 1204.
- EVANS, R. O. GILLIAM, J. W., SKAGGS, R. W. (1989): Design guidelines for water table management systems in Coastal Plain soi. Journal of Applied Engineering in Agriculture 5, 539 548.
- FAUSEY, N. R. (2005): Drainage management for humid regions. International Agricultural Engineering Journal 14, 209 214.
- GASIUNAS, V., MISEVIČINE, S., BASTIENÉ, N., ADAMONYTÉ, I. (2022): General Recommendations for Introduction of controlled Drainage Innovation. Dotnuva: Vytautas Magnus University Agriculture Academy.
- GAYNOR, J. D., TAN, C. S., DRURY, C. F., WELACKY, T. W., REYNOLDS, W. D. (2002): Runoff and drainage losses of atrazine, metribuzin, and metolachlor in three water management systems. Journal of Environmental Quality 31, 300 308.
- GEIGER, J. (2023): "EkoDrena Geregelte Drainage EINBAUANLEITUNG". Einbauanleitung für EkoDrena System erhalten am 04.06.2024, nicht veröffentlicht (PDF-Dokument vorhanden).
- GILLIAM, J. W., SKAGGS, R. W., WEED, S. B. (1979): Drainage control to diminish nitrate loss from agricultural fields. Journal of Environmental Quality 8, 137 142.
- HELMERS, M. R., CHRISTIANSON, R., BRENNEMAN, G., LOCKETT, D., PEDERSON, C. (2012): Water table, drainage, and yield response to drainage water management in southeast lowa. Journal of Soil and Water Conservation 67, 495 501.
- JAYNES, D. B. (2012): Changes in yield and nitrate losses from using drainage water management in central lowa, United States. Journal of Soil and Water Conservation 67, 485 494.

Literatur

- LALONDE, V. MADRAMOOTOO, C. A., TRENHOLM, L., BROUGHTON, R. S. (1996): Effects of controlled drainage on nitrate concentrations in subsurface drain discharge. Agricultural Water Management 29, 187 199.
- LANDKREIS DIEPHOLZ (2024): Wasserrückhalt: Gesteuerte Drainage in der Landwirtschaft. <u>Wasserrückhalt: Gesteuerte Drainage in der Landwirtschaft | Landkreis Diepholz</u> (Zugriff am 15.07.2025).
- MARKOVIC, M., KOCAR, M. M., BARAC, Z., TURALIJA, A., ATILGAN, A., JUG, D., RAVLIC, M. (2024): Field Performance Evaluation of Low-Cost Soil Moisture Sensors in Irrigated Orchard. Agriculture 14, 1239 1258.
- POOLE, C. A., SKAGGS, R. W., CHESCHEIR, G. M., YOUSSEF, M. A., CROZIER, C. R. (2011): The effects of drainage water management on crop yields in eastern North Carolina. Louisville: American Society of Agricultural and Biological Engineers.
- RAMOSKA, E., BASTIENE, N., SAULYS, V. (2009): Evaluation of controlled Drainage Efficiency in Lithuania. Irrigation and Drainage 60, 196 206.
- SKAGGS, R. W., FAUSEY, N., EVANS, R. O. (2012): Drainage water management. Journal of Soil and Water Conservation 67, 167 172.
- SKAGGS, R. W., YOUSSEF, M. A., GILLIAM, J. W., EVANS, R. O. (2010): Effect of Controlled Drainage on Water and Nitrogen Balances in Drained Lands. American Society of Agricultural and Biological Engineers 53, 1843 1850.
- TOLOMIO, M., BORIN, M. (2018): Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy. Agricultural Water Management 201, 1 10.
- TAN, C. S., DRURY, C. E., SOULTANI, M., WESENBEECK, I. J., NG, H. Y., GAYNOR, J. D., WELACKY, T. W. (1998): Effect of controlled drainage and tillage on soil structure and tile drainage nitrate loss at the filed scale. Water Science and Technology 38, 103 110.
- WESSTROM, I., MESSING, I. (2007): Effects of controlled drainage on N and P losses and N dynamics in a loamy sand with spring crops. Agricultural Water Management 87, 229 240.